
Summarizing Source Code with Transferred API Knowledge

Xing Hu1,2, Ge Li1,2∗, Xin Xia3, David Lo4, Shuai Lu1,2 and Zhi Jin1,2∗

1 Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
2 Institute of Software, EECS, Peking University, Beijing, China

3 Faculty of Information Technology, Monash University, Australia
4 School of Information Systems, Singapore Management University, Singapore

{huxing0101, lige, shuai.l, zhijin}@pku.edu.cn, xin.xia@monash.edu, davidlo@smu.edu.sg

Abstract

Code summarization, aiming to generate succinct
natural language description of source code, is ex-
tremely useful for code search and code compre-
hension. It has played an important role in software
maintenance and evolution. Previous approaches
generate summaries by retrieving summaries from
similar code snippets. However, these approaches
heavily rely on whether similar code snippets can
be retrieved, how similar the snippets are, and fail
to capture the API knowledge in the source code,
which carries vital information about the function-
ality of the source code. In this paper, we propose a
novel approach, named TL-CodeSum, which suc-
cessfully uses API knowledge learned in a differ-
ent but related task to code summarization. Ex-
periments on large-scale real-world industry Java
projects indicate that our approach is effective and
outperforms the state-of-the-art in code summariza-
tion.

1 Introduction
As a critical task in software maintenance and evolution, code
summarization aims to generate functional natural language
description for a piece of source code (e.g., method). Good
summaries improve program comprehension and help code
search [Haiduc et al., 2010]. The code comment is one of
the most common summaries used during software develop-
ments. Unfortunately, the lack of high-quality code com-
ments is a common problem in software industry. Good com-
ments are often absent, unmatched, and outdated during the
evolution. Additionally, writing comments during the devel-
opment is time-consuming for developers. To address these
issues, some studies have tried to give summaries for source
code automatically [Haiduc et al., 2010; Moreno et al., 2013;
Iyer et al., 2016; Hu et al., 2018]. Generating code summaries
automatically can help save the developers’ time in writing
comments, program comprehension, and code search.

∗Corresponding Authors

Previous works have exploited Information Retrieval (IR)
approaches and learning-based approaches to generate sum-
maries. Some IR approaches search comments from simi-
lar code snippets as summaries [Haiduc et al., 2010; Eddy
et al., 2013], while some approaches extract keywords from
the given code snippets as summaries [Moreno et al., 2013].
However, these IR-based approaches have two main limita-
tions. First, they fail to extract accurate keywords when the
identifiers and methods are poorly named. Second, they can-
not output accurate summaries if no similar code snippet ex-
ists.

Recently, some studies have adopted deep learning ap-
proaches to generate summaries by building probabilistic
models of source code [Iyer et al., 2016; Allamanis et al.,
2016; Hu et al., 2018]. [Hu et al., 2018] combines the
neural machine translation model and the structural infor-
mation within the Java methods to generate the summaries
automatically. [Allamanis et al., 2016] proposes a convo-
lutional model to generate name-like summaries, and their
approach can only produce summaries with an average of 3
words. [Iyer et al., 2016] presents an attention-based Re-
current Neural Networks (RNN) named CODE-NN to gener-
ate summaries for C# and SQL code snippets collected from
Stack Overflow. Their experimental results have proved the
effectiveness of deep learning approaches on code summa-
rization. Although deep learning techniques are successful in
the first step toward automatic code summary generation, the
performance is limited since they treat source code as plain
text. There is much latent knowledge in source code, e.g.,
identifier naming conventions and Application Programming
Interface (API) usage patterns. Intuitively, the functionality
of a code snippet is related to its API sequences. Develop-
ers often invoke a specific API sequence to implement a new
feature. Compared to source code with different coding con-
ventions, API sequences tend to be regular. For example,
we usually use the following API sequence of Java Devel-
opment Kit (JDK): FileRead.new, BufferReader.new, Buffer-
Reader.read, and BufferReader.close to implement the func-
tion “Read a file”. We conjecture that knowledge discovery
in API sequence can assist the generation of code summaries.
Inspired by the transfer leaning [Pan and Yang, 2010], the
code summarization task can be fine tuned by using the API

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2269

Code Corpora

09~14

15~16

API Seqs and
Summary Extraction

Pairs of API Seqs
and Summaries

Code and Summary
Extraction

Pairs of Code,
API sequence and

Summaries

Encoder Decoder

API Summarization Model

API Seq Summary

API Seq

Encoder

Decoder Summary

 Code Summarization Model

Transfered

Trained
Model

Java Method

API Seq and
 Source Code

Code Summary

1

1

API Knowledge
 learning

2

3 TL-CodeSum
Training

Online
Generation
5

Code
tokens

4

Figure 1: The overall architecture of TL-CodeSum

knowledge learned in a different but related task. In order to
verify our conjecture, we conduct an experiment on generat-
ing summaries for Java methods which are functional units of
Java programming language.

In this paper, we propose a novel approach called TL-
CodeSum, which generates summaries for Java methods with
the assistance of transferred API knowledge learned from an-
other task of API sequences summarization. We conduct
the code summarization task on the Java projects which are
created from 2015 to 2016 in GitHub. The API sequence
summarization task aims to build the mappings between API
knowledge and the corresponding natural language descrip-
tions. The corpus for API sequence summarization consists
of 〈API sequence, summary〉 pairs extracted from a large-
scale Java projects which are created from 2009 to 2014
in GitHub. The experimental results demonstrate that TL-
CodeSum significantly outperforms the state-of-the-art on
code summarization.

The contributions of our work are shown as follows:

• We propose a novel approach named TL-CodeSum that
summarizes Java methods with the assistance of the
learned API knowledge.

• We design a framework to learn API knowledge from
API sequence summarization task and use it to assist
code summarization task.

2 Related Work
As an integral part of software development, code summaries
describe the functionalities of source code. IR approaches
[Haiduc et al., 2010; Wong et al., 2015] and learning-based
approaches [Iyer et al., 2016; Allamanis et al., 2016] have
been exploited to automatic code summarization. IR ap-
proaches are widely used in code summarization. They
usually synthesize summaries by retrieving keywords from
source code or searching comments from similar code snip-
pets. [Haiduc et al., 2010] applied two IR techniques, the
Vector Space Model (VSM) and Latent Semantic Indexing
(LSI), to generate term-based summaries for Java classes and
methods. [Wong et al., 2015] applied code clone detection
techniques to find similar code snippets and extract the com-
ments from the similar code snippets. The effectiveness of IR
approaches heavily depends on whether similar code snippets
exist and how similar they are. While extracting keywords
from the given code snippets, they fail to generate accurate
summaries if the source code contains poorly named identi-
fiers or method names.

Recently, inspired by the work of [Hindle et al., 2012], an
increasing number software tasks, e.g., fault detection [Ray
et al., 2016], code completion [Nguyen et al., 2013], and
code summarization [Iyer et al., 2016], build language mod-
els for source code. These language models vary from n-gram
model [Nguyen et al., 2013; Allamanis et al., 2014], bimodal
model [Allamanis et al., 2015b], and RNNs [Iyer et al., 2016;
Gu et al., 2016]. Generating summaries from source code
aims to bridge the gap between programming language and
natural language. [Raychev et al., 2015] aimed to pre-
dict names and types of variables, whereas [Allamanis et al.,
2015a; 2016] suggested names for variables, methods and
classes. [Hu et al., 2018] exploited the neural machine trans-
lation model on the code summarization with the assistance
of the structural information. [Allamanis et al., 2016] ap-
plied a neural convolutional attentional model to summariz-
ing the Java code into short, name-like summaries (average 3
words). [Iyer et al., 2016] presented an attention-based RNN
network to generate summaries that described the functional-
ities of C# code snippets and SQL queries. These works have
proved the effectiveness of building probabilistic models for
code summarization. In this paper, we consider exploiting the
latent API knowledge in source code to assist the code sum-
marization. Inspired by transfer learning which achieves suc-
cesses on training models with a learned knowledge [Pan and
Yang, 2010], the API knowledge used to code summarization
is learned from a different but related task.

3 Approach
In this section, we present our proposed approach TL-
CodeSum, which decodes summaries from source code with
transferred API knowledge. As shown in Figure 1, the ap-
proach mainly consists of three parts: data processing, model
training, and online code summary generation. The model
aims to implement two tasks, API sequence summarization
task and code summarization task. The API sequence sum-
marization task aims to build the mappings between API
knowledge and the functionality descriptions. The learned
API knowledge is applied to code summarization task to as-
sist the summary generation. The details of the two tasks will
be introduced in the following sections.

3.1 API Sequence Summarization Task
API sequence summarization aims to build the mappings be-
tween API knowledge and natural language descriptions. To
implement a certain functionality, for example, how to read
a file, developers often invoke the corresponding API se-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2270

h’1 h’2 h’3

s’ts’t-1 ……

API Sequences
 Encoder

Decoder

Collections.
emptyMap

File.
listFiles

File.
delete

cached

all cached

files

(a) API Sequence Summarization

h’1 h’2 h’3

h1 h2 h3 hl…

st-1 st

…

… …

Code Encoder

API Sequences
Encoder

Decoder

File.

isDirectory
File.

list

File.

delete

public static boolean … EOS

(b) Code Summarization with Transferred API
Knowledge.

Figure 2: The model of TL-CodeSum

quences. In this paper, we exploit the API knowledge to assist
code summarization.

The knowledge is learned from the API summariza-
tion task which generates summaries for API sequences.
The task adopts a basic Sequence-to-Sequence (Seq2Seq)
model which achieves successes in Machine Translation
(MT) [Sutskever et al., 2014], Text Summarization [Rush et
al., 2015], and etc. As shown in Figure 2(a), it mainly con-
tains two parts, an API sequence encoder and a decoder.

Let A′ = {A′(i)} denotes a set of API sequence where
A′(i) = [a′1, ..., a

′
m] denotes the sequence of API invocations

in a Java method. For each A′(i) ∈ A′, there is a correspond-
ing natural language description D′(i) = [d′1, ..., d

′
n]. The

goal of API sequence summarization is to align the A′ and
D′, namely, A′ → D′.

The API encoder uses an RNN to read the API sequence
A′(i) = [a′1, ..., a

′
m] one-by-one. The API sequence is embed-

ded into a vector that represents the API knowledge. The API
knowledge is then used to generate the target summary by
the decoder. To better capture the latent alignment relations
between API sequences and summaries, we adopt the clas-
sic attention mechanism [Bahdanau et al., 2014]. The hidden
state of the encoder is updated according to the API and the
previous hidden state,

h′t = f(a′t, h
′
t−1) (1)

where f is a non-linear function that maps a word of source
language into a hidden state h′t at time t by considering pre-
vious hidden states h′t−1. In this paper, we use a Gated Re-
current Units (GRU) as f . The decoder is another RNN and
trained to predict conditional probability of the next word
d′t′ given the context vector C′ and the previously predicted
words d′1, ..., d

′
t′−1 as

p(d′t′ |d′1, ..., d′t′−1, A′) = g(d′t′−1, s
′
t′ ,C

′
t′) (2)

where g is a non-linear function that outputs the probability
of d′t′ and s′t′ is an RNN hidden state for time step t′ and
computed by

s′t′ = f(s′t′−1, d
′
t′−1,C

′
t′) (3)

The context vector C′i is computed as a weighted sum of hid-

den states of the encoder h′1, ..., h
′
m,

C′i =
m∑
j=1

α′ijh
′
j (4)

where

α′ij =
exp(eij)∑m
k=1 exp(eik)

(5)

and
eij = a(s′i−1, h

′
j) (6)

is an alignment model which scores how well the inputs
around position j and the output at position i match. Both
the encoder and decoder RNN are implemented as a GRU
[Cho et al., 2014], which is one of widely-used RNN.

3.2 Code Summarization Task
The code summarization model is a variant of the basic
Seq2Seq model. Instead of using a code encoder and a
decoder, TL-CodeSum adds another API encoder which is
transferred from API summarization model. Let C = {C(i)}
, A = {A(i)}, and D = {D(i)} denote the source code, API
sequences, and corresponding summaries of Java methods re-
spectively. The goal of code summarization is to generate
summaries from source code with the assisted API knowl-
edge learned from API sequence summarization, namely,
C,A → D.

As shown in Figure 2(b), the API sequences within Java
methods are encoded by the transferred API encoder, which
is marked red in API summarization task. The code encoder
and API encoder aim to learn the semantic information of the
given code snippet C = [c1, ..., cl] and API sequence A =
[a1, ..., am] respectively. In order to integrate the two parts of
information better, the decoder needs to be able to combine
the attention information collected from both two encoders.
The context vector is computed as their sum,

Ci =
l∑

j=1

αijhj +
m∑
j=1

α′ijh
′
j (7)

where α and α′ are attention distributions of source code and
API sequence respectively. The decoding procedure is similar
to the API summarization task which adopts a GRU to predict
word-by-word.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2271

Datasets #Projects #Files #Lines #Items

15-16 9,732 1,051,647 158,571,730 69,708
09-14 13,154 2,938,929 496,215,929 340,922

Table 1: Statistics for code snippets in our dataset

API sequences Lengths

Avg Mode Median <5 <10 <20
4.39 1 2 79.99% 91.38% 97.18%

Comments Lengths

Avg Mode Median <20 <30 <50
8.86 8 13 75.50% 86.79% 95.45%

Code Lengths

Avg Mode Median <100 <150 <200
99.94 16 65 68.63% 82.06% 89.00%

Table 2: Statistics for API sequence, code and comments length

4 Experiments
4.1 Dataset Details
There are two datasets used in our work, one for API se-
quence summarization and the other one for code summa-
rization as shown in the data processing stage in Figure 1.
The two datasets are both collected from GitHub. The API
sequence summarization dataset contains Java projects from
2009 to 2014 and is used to learn API knowledge. The Java
projects used in code summarization task are created from
2015 to 2016. The API knowledge learned from the former
dataset is applied to train the code summarization task on the
latter dataset. To keep the quality of the projects, we select the
projects that have at least 20 stars as the preliminary dataset.
The API sequences are extracted by the approach that [Gu
et al., 2016] proposed. We use Eclipse’s JDT compiler1 to
parse source code into AST trees. Then we extract the Java
methods, the API sequences within these methods and the
corresponding Javadoc comments which are standard com-
ments for Java methods. These comments that describe the
functionalities of Java methods are taken as code summaries.
The source code is tokenized into tokens before they are fed
into the network. To decrease noise introduced to the learning
process, we only take the first sentence of the comments since
they typically describe the functionalities of Java methods ac-
cording to Javadoc guidance2. However, not every comment
is useful, so some heuristic rules are required to filter the data.
Methods with empty or just one-word descriptions are filtered
out in this work. The setter, getter, constructor, test methods,
and override methods, whose comments are easy to predict,
are also excluded.

At last, we get 340,922 pairs of 〈API sequence, summary〉
for API knowledge learning in API sequences summarization
task and 69,708 pairs of 〈 API sequence, code, summary〉 for
code summarization task.3 We split each dataset into train-

1http://www.eclipse.org/jdt/
2http://www.oracle.com/technetwork/articles/java/index-

137868.html
3The data and code are available at https://github.com/xing-

Approaches Precision Recall F-score

CODE-NN 26.21 14.17 18.40
API-Only 30.72 21.14 25.05

Code-Only 38.89 28.81 33.10
API+Code 41.06 30.34 34.90

TL-CodeSum(fixed) 42.20 34.38 37.89
TL-CodeSum(fine-tuned) 40.78 35.41 37.91

Table 3: Precision, Recall, and F-score for our approach compared
with baseline

Approaches BLEU score METEOR

CODE-NN 25.3 6.92
API-Only 26.45 10.71

Code-Only 35.50 14.78
API+Code 37.28 15.88

TL-CodeSum(fixed) 36.42 18.07
TL-CodeSum(fine-tuned) 41.98 18.81

Table 4: BLEU and METEOR for our approach compared with
baseline

ing, valid and testing sets in proportion with 8 : 1 : 1 after
shuffling the pairs. We train all models using the training set
and compute the accuracy scores in the test set. The average
lengths of Java methods, API sequences, and comments are
99.94, 4.39, and 8.86 respectively. The detailed information
of the datasets is shown in Table 1 and Table 2.

4.2 Experiment Settings
We set the dimensionality of the GRU hidden states, token
embeddings, and summary embeddings to 128. The model is
trained using the mini-batch stochastic gradient descent algo-
rithm (SGD) and the batch size is set as 32. The maximum
lengths of source code and API sequences are 300 and 20.
For decoding, we set the beam size to 5 and the maximum
summary length to 30 words. Sequences that exceed the max-
imum lengths will be excluded from training. The vocabulary
size of the code, API, and summary are 50,000, 33,082, and
26,971. We use the Tensorflow to train our models on GPUs.

5 Experimental Results
5.1 Accuracy in Summary Generation
Metric: In this paper, we use IR metrics and Machine
Translation (MT) metrics to evaluate our method. For IR met-
rics, we report the precision, recall and F-sore of our method.
Based on the number of mapped unigrams found between the
two strings (m), the total number of unigrams in the transla-
tion (t) and the total number of unigrams in the reference (r),
we calculate unigram precision P = m/t and unigram recall
R = m/r. Precision is the fraction of generated summary to-
kens that are relevant, while recall is the fraction of relevant
tokens that are generated. F-score is the quality compromise
between precision and recall.

We use two MT metrics BLEU score [Papineni et al., 2002]
and METEOR [Denkowski and Lavie, 2014] which are also
used in CODE-NN to measure the accuracy of generated

hu/TL-CodeSum

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2272

Figure 3: A 2D projection of API embeddings using t-SNE

source code summaries. BLEU score is a widely used ac-
curacy measure for machine translation. It computes the n-
gram precision of a candidate sequence to the reference. ME-
TEOR is recall-oriented and evaluates translation hypothe-
ses by aligning them to reference translations and calculating
sentence-level similarity scores.

Baseline: We compare TL-CodeSum with CODE-NN [Iyer
et al., 2016] which is a state-of-the-art code summarization
approach. CODE-NN proposed an end-to-end generation
system to generate summaries given code snippets. Com-
pared to TL-CodeSum, CODE-NN generates each word by a
global attention model which computes a weighted sum of the
embeddings of code tokens instead of hidden states of RNNs.
We also evaluate the accuracy of generated summaries given
API and code using the basic Seq2Seq model respectively
(API-Only and Code-Only). To evaluate the influence of the
transferred API knowledge, we conduct an experiment that
uses two encoders to encoder API sequences and source code
respectively without transferred API knowledge (API+Code).
Additionally, we compare two approaches to exploiting API
knowledge, fine tuning the whole network (fine tuned TL-
CodeSum) and train the network with fixed API knowledge
(fixed TL-CodeSum) .

Results: Table 3 illustrates the results on IR metrics of
different approaches. Precision denotes the ratio of match-
ing words in the generated comments. Results show that
using RNN to encode the source code (Code-Only) or API
sequences (API-Only) outperforms using the embeddings of
tokens directly (CODE-NN). The RNNs are good at learning
the semantics of input sequences and the code information is
much more helpful for summary generation. When combin-
ing source code and API information, the precision is much
higher than CODE-NN and the two basic Seq2Seq models
(i.e., Code-Only and API-Only). The improvements have
proved the importance of API information while generat-
ing comments. Furthermore, transferring the API knowledge
from the API sequence summarization task directly improves

Examples

Java method and
API Sequence

protected void sprint(double
doubleField){
sprint(String.valueOf(doubleField));

}

String.valueOf

Human-Written Pretty printing accumulator func-
tion for doubles

TL-CodeSum pretty printing accumulator func-
tion for longs

Java method and
API Sequence

public void removeMouseListener(
GlobalMouseListener listener){
listeners.remove(listener);

}

List.remove
Human-Written Removes a global mouse listener

TL-CodeSum removes an existing message lis-
tener.

Java method and
API Sequence

private static boolean
instanceOfAny(Object o,
Collection<Class> classes){
for(Class c: classes){

if (c.isInstance(o))
return true;

}
return false;

}

Collection.isEmpty→Collection.add
→Class.isInstance

Human-Written
returns true if the Object ‘o’ is an
instance of any class in the Collec-
tion

TL-CodeSum returns true if the object is regis-
tered in classes, or false otherwise.

Table 5: Examples of generated summaries given Java methods and
API sequences.

the precision and recall. The precision decreases when fine-
tuning the whole network, while the recall is increased. In
terms of F-score, our proposed model with fine-tuning shows
slightly improvement over our model with fixed parame-
ters. TL-CodeSum generates more overlapping words be-
tween automatically generated summaries and human-written
summaries. Overall, the TL-CodeSum surpasses other ap-
proaches on generating information related summaries. We
also evaluate the gap between automatically generated sum-
maries and human-written summaries on MT metrics. Ta-
ble 4 illustrates METEOR scores and sentence level BLEU
scores of different approaches to generating comments for
Java methods. As the results indicate, the TL-CodeSum ob-
viously outperforms the state-of-the-art method CODE-NN
on Java methods summarization. The BLEU score and ME-
TEOR of CODE-NN and API-Only reflect that summarizing
from API sequences by Seq2Seq model has the similar abil-
ity of CODE-NN, although the semantics of API sequences
are much fewer than the source code. It mainly learns the
relationship between API knowledge and functionalities of
Java methods. Integrating the learned API knowledge and
source code greatly improves the BLEU score and METEOR.
Through the evaluation, we have verified the effectiveness of
API usage patterns for code summarization. TL-CodeSum
can not only generate more informative related comments

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2273

Source Code:

API Seq: DataOutputStream.writeByte —>
 DataOutputStream.writeShort—>
 DataOutputStream.writeShort

Human Written Comments:
Write the constant to the output stream

Automatically Generated Comments:
Write the constant to the output stream

(a) An example of code snippet (b) Attention
weights for
API sequences

(c) Attention weights for source code tokens

Figure 4: Heatmap of attention weights for API sequence and source code snippets. The model learns to align key summary words with the
corresponding tokens in API sequences and source code.

but also more expressive comments than state-of-the-art base-
lines. Compared to the model without API sequences, the
BLEU score of TL-CodeSum increases to 41.98%.

5.2 Quality Analysis
API Embedding Quality. The API usage pattern is an im-
portant part of code summarization. Different coding con-
ventions of different developers improve the difficulties of
semantic learning. The API usage patterns are relatively reg-
ular, hence integrating API knowledge helps learn the func-
tionalities of source code. The quality of API embeddings’
learning is crucial for our proposed method to work well.
Figure 3 shows a 2-D projection of the embeddings of APIs.
For ease the demonstration, we select the APIs related to
“String” and “Math” which are circled in Figure 3. As shown
in the graph, TL-CodeSum can successfully embed APIs im-
plementing similar functionalities.

Complementarity of API and Code. TL-CodeSum gen-
erates summaries according to the semantics of source code
and the transferred API knowledge. Figure 4 shows the at-
tention weights for the API sequence and code tokens within
the Java method while generating their corresponding sum-
maries. We give the details of Java method, API sequence
within it, the human-written comment, and the automatically
generated comment by TL-CodeSum in Figure 4(a). The gen-
erated tokens have different relationships between API se-
quence and code tokens. From the figure, we find the words
“write” and “stream” are more relevant to API “DataOutput-
Stream.writeByte”. While the word “constant” is more rel-
evant the variable “tab” whose type is “ConstantPool”. TL-
CodeSum aligns different words with specific API or code
tokens.

Comparison between Human-Written and TL-CodeSum
Generated Summaries. Table 5 shows three examples of
generated summaries. Most generated summaries are clear,
coherent, and informative related regardless the lengths of

Java methods. The main differences between the generated
and human-written summaries are as follows:

1. Words replacement: Some words are replaced by
their synonyms, antonyms, or words in the same domain. In
the first example, the word “doubles” is replaced by “longs”
which comes from the same domain (the data types of Java
language).

2. More general: TL-CodeSum learns the functionali-
ties over a large-scale dataset. The generated summaries may
present more general meaning and give the abstract semantics
of given Java methods just like the second example.

3. Missed Identifiers: Identifiers are defined by differ-
ent developers and those used by different methods may dif-
fer from one another. Learning the identifiers is challenging
problems [Hellendoorn and Devanbu, 2017]. TL-CodeSum
misses some identifiers or replaces them with “UNK” some-
times. As the third example shows, the identifiers “o” and
“Collection” are missing in the generated summary.

6 Conclusion
In this paper, we propose a novel deep model called TL-
CodeSum to generate summaries by capturing semantics
from the source code with the assistance of API knowledge.
The API knowledge is transferred into TL-CodeSum from
API sequence summarization task. Experimental results on
Java methods indicate that integrating API sequences is ben-
eficial and effective. TL-CodeSum significantly outperforms
the state-of-the-art methods for code summarization. In the
future, we will combine richer program structural and sequen-
tial information derived from program analysis tools for code
summarization.

Acknowledgments
This research is partially supported by the National Basic Re-
search Program of China (the 973 Program) under Grant No.
2015CB352201, and the National Natural Science Founda-
tion of China under Grant No.61620106007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2274

References
[Allamanis et al., 2014] Miltiadis Allamanis, Earl T Barr,

Christian Bird, and Charles Sutton. Learning natural cod-
ing conventions. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, pages 281–293. ACM, 2014.

[Allamanis et al., 2015a] Miltiadis Allamanis, Earl T Barr,
Christian Bird, and Charles Sutton. Suggesting accurate
method and class names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering,
pages 38–49. ACM, 2015.

[Allamanis et al., 2015b] Miltos Allamanis, Daniel Tarlow,
Andrew Gordon, and Yi Wei. Bimodal modelling of
source code and natural language. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML-15), pages 2123–2132, 2015.

[Allamanis et al., 2016] Miltiadis Allamanis, Hao Peng, and
Charles Sutton. A convolutional attention network for
extreme summarization of source code. In Interna-
tional Conference on Machine Learning, pages 2091–
2100, 2016.

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. Computer Science,
2014.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. Computer Science, 2014.

[Denkowski and Lavie, 2014] Michael Denkowski and Alon
Lavie. Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the
EACL 2014 Workshop on Statistical Machine Translation,
2014.

[Eddy et al., 2013] Brian P Eddy, Jeffrey A Robinson,
Nicholas A Kraft, and Jeffrey C Carver. Evaluating source
code summarization techniques: Replication and expan-
sion. In Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, pages 13–22. IEEE, 2013.

[Gu et al., 2016] Xiaodong Gu, Hongyu Zhang, Dongmei
Zhang, and Sunghun Kim. Deep api learning. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages
631–642. ACM, 2016.

[Haiduc et al., 2010] Sonia Haiduc, Jairo Aponte, Laura
Moreno, and Andrian Marcus. On the use of automated
text summarization techniques for summarizing source
code. In Reverse Engineering (WCRE), 2010 17th Work-
ing Conference on, pages 35–44. IEEE, 2010.

[Hellendoorn and Devanbu, 2017] Vincent J Hellendoorn
and Premkumar Devanbu. Are deep neural networks the
best choice for modeling source code? In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 763–773. ACM, 2017.

[Hindle et al., 2012] Abram Hindle, Earl T Barr, Zhendong
Su, Mark Gabel, and Premkumar Devanbu. On the natu-
ralness of software. In Software Engineering (ICSE), 2012
34th International Conference on, pages 837–847. IEEE,
2012.

[Hu et al., 2018] Xing Hu, Ge Li, Xin Xia, David Lo, and
Zhi Jin. Deep code comment generation. In Proceedings
of the 2018 26th IEEE/ACM International Confernece on
Program Comprehension. ACM, 2018.

[Iyer et al., 2016] Srinivasan Iyer, Ioannis Konstas, Alvin
Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In ACL (1), 2016.

[Moreno et al., 2013] Laura Moreno, Jairo Aponte,
Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. Automatic generation of natu-
ral language summaries for java classes. In Program
Comprehension (ICPC), 2013 IEEE 21st International
Conference on, pages 23–32. IEEE, 2013.

[Nguyen et al., 2013] Tung Thanh Nguyen, Anh Tuan
Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. A sta-
tistical semantic language model for source code. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 532–542. ACM, 2013.

[Pan and Yang, 2010] Sinno Jialin Pan and Qiang Yang. A
survey on transfer learning. IEEE Transactions on knowl-
edge and data engineering, 22(10):1345–1359, 2010.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computational
Linguistics, 2002.

[Ray et al., 2016] Baishakhi Ray, Vincent Hellendoorn, Sa-
heel Godhane, Zhaopeng Tu, Alberto Bacchelli, and
Premkumar Devanbu. On the naturalness of buggy code.
In Proceedings of the 38th International Conference on
Software Engineering, pages 428–439. ACM, 2016.

[Raychev et al., 2015] Veselin Raychev, Martin Vechev, and
Andreas Krause. Predicting program properties from big
code. In ACM SIGPLAN Notices, volume 50, pages 111–
124. ACM, 2015.

[Rush et al., 2015] Alexander M Rush, Sumit Chopra, and
Jason Weston. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685, 2015.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[Wong et al., 2015] Edmund Wong, Taiyue Liu, and Lin Tan.
Clocom: Mining existing source code for automatic com-
ment generation. In Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International
Conference on, pages 380–389. IEEE, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2275

